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Multi-Resemblance Multi-Target Low-Rank
Coding for Prediction of Cognitive Decline

With Longitudinal Brain Images
Jie Zhang, Jianfeng Wu, Qingyang Li, Richard J. Caselli , Paul M. Thompson, Jieping Ye, Fellow, IEEE,

and Yalin Wang , Senior Member, IEEE

Abstract— An effective presymptomatic diagnosis and
treatment of Alzheimer’s disease (AD) would have enor-
mous public health benefits. Sparse coding (SC) has
shown strong potential for longitudinal brain image analy-
sis in preclinical AD research. However, the traditional
SC computation is time-consuming and does not explore
the feature correlations that are consistent over the
time. In addition, longitudinal brain image cohorts usu-
ally contain incomplete image data and clinical labels.
To address these challenges, we propose a novel two-stage
Multi-Resemblance Multi-Target Low-Rank Coding (MMLC)
method, which encourages that sparse codes of neighbor-
ing longitudinal time points are resemblant to each other,
favors sparse code low-rankness to reduce the compu-
tational cost and is resilient to both source and target
data incompleteness. In stage one, we propose an online
multi-resemblant low-rank SC method to utilize the common
and task-specific dictionaries in different time points to
immune to incomplete source data and capture the lon-
gitudinal correlation. In stage two, supported by a rigor-
ous theoretical analysis, we develop a multi-target learning
method to address the missing clinical label issue. To solve
such a multi-task low-rank sparse optimization problem,
we propose multi-task stochastic coordinate coding with
a sequence of closed-form update steps which reduces
the computational costs guaranteed by a theoretical con-
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vergence proof. We apply MMLC on a publicly available
neuroimaging cohort to predict two clinical measures and
compare it with six other methods. Our experimental results
show our proposed method achieves superior results on
both computational efficiency and predictive accuracy and
has great potential to assist the AD prevention.

Index Terms— Multi-task, longitudinal incomplete data,
sparse coding, low-rank, multi-resemblance.

I. INTRODUCTION

ALZHEIMER’S disease (AD) [1] is known as the most
common type of dementia. It is a slow progressive

neurodegenerative disorder leading to a loss of memory
and reduction of cognitive function. Many clinical/cognitive
measures such as Mini Mental State Examination (MMSE)
and Alzheimer’s Disease Assessment Scale cognitive subscale
(ADAS-Cog) have been designed to evaluate a subject’s cog-
nitive decline. It is crucial to predict AD-related cognitive
decline in its presymptomatic stage so an early intervention
or prevention becomes possible.

In AD research, cognitive concerns correlate with struc-
tural magnetic resonance imaging (sMRI)-based measures
of atrophy in several structural measures, including whole-
brain, entorhinal cortex, hippocampus and temporal lobe vol-
umes. [2] These findings support their potential usage as
predictors of disease progression. Among various sMRI-based
measures, hippocampal morphometry was one of the most
popular measures for assessing disease burden, progression
and effects of treatments [2]–[6]. Therefore, surface-based
hippocampal morphometry has been studied intensively for
cognitive decline research, e.g., [7]–[12], including our work,
e.g., [13]–[17]. However, a notoriously challenging problem
in neuroimaging arises from the fact that the imaging feature
dimensionality is intrinsically high while only a small number
of samples are available. Recent work shows that sparse
coding (SC) [18]–[21] allows us to represent the primary
image features as a small set of sparse coefficients and
boosts their prediction power. However, the optimization of
such problems is extremely time-consuming and the local
features with similar descriptors lead to inconsistent sparse
codes which may downgrade the statistical power on AD
prediction. In addition, modeling sequential longitudinal data
by an unsupervised learning approach such as SC is even more
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challenging because it is hard to extract correlation patterns
from different time points.

Many multi-task researches aim to excavate the correla-
tions among data from different modalities or time points.
Wang et al. [22] propose a multi-task sparse regression and
feature selection method to jointly analyze the clinical and
neuroimaging data in prediction of the memory perfor-
mance [23]. Zhang and Shen [24] exploit a �2,1-norm based
group sparse regression method to select features that can
be used to jointly predict two clinical statuses and repre-
sent the different clinical status. A multi-task sparse learning
framework is proposed to integrate multiple incomplete data
sources in [25], e.g. there are blockwise sMRI images missing
in some time points. Our prior work [20] proposes a novel
unsupervised multi-task SC method that learns the different
tasks simultaneously and utilizes shared and task-specific
dictionaries to encode both consistent and individual imaging
features for longitudinal image data analysis.

Although the multi-task SC may model sequential longitudi-
nal data, the conventional SC method remains a computational
challenge. We therefore consider the low-rankness in the
sparse codes computation that favors both feature sparsity
and learning efficiency. There are at least two advantages
of the low-rank constraint on the sparse codes at each
time point. Firstly, low-rankness technique was originally
proposed to reduce noise and improve the signal-to-noise
ratio (SNR) [26], [27]. Adding the low-rank constraint on the
learned sparse codes at each time point (Eq. 2), we aim to
exploit the correlations between the sparse codes. Similar to
our recent work [17], it will reduce the noises in surface-based
hippocampal morphometry features and therefore improve the
statistical power. Secondly, the low-rankness will significantly
improve the computational efficiency [28]–[30]. Meanwhile,
our prior work [20] simply concatenates the longitudinal data
while neglecting the intrinsic resemblance of the longitudinal
data. It ignores the fact that the neighborhood features not
only have resemblant codebooks but also have resemblant
representations. Therefore, there is a huge sacrifice of valuable
neighborhood time points information from the longitudinal
data. To remedy this problem, here we exploit the resemblance
among features lying in the neighboring time points and
seek an accurate joint representation of these local features.
We design a resemblance penalty term which may make the
coefficients of multiple neighboring time points resemblant,
ensuring higher correlations between features of nearby time
points than those of distant time points.

The unsupervised multi-task learning overcomes the incom-
plete source data problem to obtain sparse features, but the
missing clinical label problem is also ubiquitous. It results
in multi-task target values after sparse features are extracted.
A forthright method is to perform linear regression at each
task and determine weighted matrix separately. However,
such methods treat all tasks independently, ignore the useful
information reserved in the changes among different tasks
and cause strong bias to predict multiple target outputs.
Another simple strategy is to remove all patients with missing
target values. It, however, significantly reduces the number
of samples. Zhou et al. [31] consider multi-task with missing

target values in the training process, but the algorithm did
not incorporate multiple-source data. For a complete solution,
we therefore consider both multiple task-incomplete data and
multiple outputs with missing target values in this work for
exploring the disease prediction problem.

In this paper, we propose a novel two-stage framework,
termed Multi-Resemblance Multi-Target Low-rank Coding
(MMLC) algorithm. In stage one, we utilize shared and
task-specific dictionaries to encode both consistent and chang-
ing imaging features along longitudinal time points and mine
the correlations among a small number of features to obtain
more consistent sparse codes than learning each time point
separately. Meanwhile, we encourage using only a few sparse
codebook representations to represent neighboring resemblant
features to improve the smoothness of prediction over the
longitudinal neighboring time points and maintain a low
computational cost. In stage two, we deal with missing clinical
labels on the target side, thus, we consider both input and
target sides’ incomplete data in the longitudinal learning
process. MMLC is computed by solving an online low-rank
dictionary learning optimization problem, which comprises a
sequence of closed-form update steps. They are achieved by
the Inexact Augmented Lagrange Multiplier (IALM) that guar-
antees a fast convergence. Our extensive experimental results
on the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
I cohort [1] show the proposed MMLC achieves significantly
faster running speed and lower estimation errors, as well as
reasonable smooth prediction scores when compared with six
other algorithms, which demonstrates great potential benefits
for the medical imaging research community.

Our prior work [20] establishes the multi-source multi-target
dictionary learning framework. The current extended journal
manuscript has four major expansions over its conference ver-
sion, including 1) adding low-rank technique to model feature
similarity and reduce the dictionary learning computational
cost, 2) enforcing sparse codes of neighboring time point
longitudinal features to be resemblant to each other, 3) pro-
viding a detailed sequence of closed-form updating steps and
theoretical guarantee of fast convergence, and 4) expanding
the experiments to provide additional insights into the benefit
of our new method.

II. METHODS

The pipeline of MMLC is illustrated in Figure 1. We will
detail each step in this section. The pipeline source code is
publicly available at http://gsl.lab.asu.edu/software/MMLC.

A. Problem Definition and Preliminaries

Given subjects from T time points: {X1, · · · , XT }, our goal
is to learn a set of sparse codes {S1, · · · , ST } for each time
point. The sparse code St ∈ Rmt ×nt

is a sparse representation
of the original input Xt ∈ Rp×nt

and t ∈ {1, . . . , T }, where p
is the feature dimension of each sample of xt

i , i = 1, . . . , nt

and nt is the number of samples for Xt and mt is the dimension
of each sparse code in St .

When employing the conventional single-task sparse cod-
ing (SC) to learn the sparse codes St by Xt individually,
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Fig. 1. The pipeline of our Multi-Resemblance Multi-Target Low-Rank Coding (MMLC) framework.

we obtain a set of dictionary {D1, · · · , DT } without correlation
between each learnt dictionary. The objective function of
single-task SC for time point t will be

min
Dt ,St

1

2
||Xt − Dt St ||2F + λ1||St ||1,1, s.t . Dt ∈ � t , (1)

where � t = {Dt ∈ Rp×mt : ∀ j ∈ 1, . . . , mt , ||Dt
j ||2 ≤ 1} and

λ1 is an non-negative parameter. � t is to prevent an arbitrary
scaling of the sparse code, each column of Dt is restricted to
be in a unit ball, i.e., ||Dt

j ||2 ≤ 1. The details of SC can be
summarized into Algorithm 1.

Algorithm 1 Single-Task Sparse Coding (STSC)

Input : Xt, t = 1, · · · , T .
Output: Dt and St , t = 1, · · · , T .

1 begin
2 for k = 1 → κ do
3 for t = 1 → T do
4 Get an input matrix Xt ;
5 Update St by cyclic coordinate descent

(CCD) [32];
6 Update Dt by stochastic gradient descent

(SGD) [33];
7 Normalize each column of dictionary Dt .

B. MMLC Stage-I: Multi-Resemblance Low-Rank SC
Stage

However, single-task SC (Eq. (1)) only uses one dictionary
D which is not sufficient to model the variations among
subjects from different time points. To address this problem,
we integrate the idea of multi-task learning [34] into the SC
method. Different from previous works, we propose to learn
the intrinsic low-dimensional space of the original data by
simultaneously conducting the dictionary learning and sparse

feature learning processes. The objective function of our
proposed multi-task low-rank SC framework is as follows:

min
Dt∈�t , St

T∑
t=1

(
1

2
||Xt − Dt St ||2F + λ1||St ||1,1),

s.t . rank(St ) ≤ lt , (2)

where the rank lt -estimate of St denotes as rank(St ) ≤ lt .
However, Eq. (2) does not consider the correlation between

the samples among the multiple time points. Therefore,
we proposed to use common and task-specific dictionary
structure to learn dictionary atoms across multiple time points
to capture the correlations. For each input matrix Xt , we learn
the dictionary atoms Dt which are composed of two parts:
Dt = [D̂t , D̄t ] where D̂t ∈ Rp×m̂t

, D̄t ∈ Rp×m̄t
and

m̂ + m̄t = mt . D̂ is the common dictionary atoms among
different tasks and D̂ = D̂1 = · · · = D̂T while D̄t is different
from each other and only learned from the corresponding task
input matrix Xt . The objective function can be reformulated
as follows:

min
Dt∈�t ,St

T∑
t=1

(
1

2
||Xt − [D̂, D̄t ]St ||2F + λ1||St ||1,1 + λ2||St ||∗).

(3)

where λ1 and λ2 quantify the tradeoff between sparsity and
low-rankness in the feature learning process. λ2 = 0 is the
special case of Eq. (3), the problem (3) will become sparse
coding problem. Specifically, the objective function Eq. (2)
is a non-convex problem due to the non-convexity of the
rank(S). We use the convex relaxation technique [35] in
Eq. (3), the trace norm (nuclear norm) has been known as the
convex envelop of the function of the rank ||S||∗ ≤ rank(S),
∀S ∈ C = {S|||S||2 ≤ 1}.

The longitudinal data of the time points close to the baseline
MR images has higher resemblance than those of time points
distant to the baseline MR images (e.g., 3-month and 6-month
MR images are more resemblant to baseline images than those
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Fig. 2. Illustration of the learning process of MMLC on ADNI-I cohort from multiple different time points to predict multiple future time points clinical
scores. In the figure, there are three input feature spaces from baseline, 6-month and 12-month as {�1, �2, �3}. We learn the dictionaries and
sparse codes in stage 1. The dictionaries have two components (shared dictionary �̂t and task-specific dictionary �̄t corresponding to specific input
�

t). The sparse codes are low-rankness and have different resemblance between each others (e.g., �1, �2 and �2, �3 share higher resemblance,
i.e., more common colors, than �1, �3). In stage 2, we use multi-target learning to predict multiple target clinical scores while dealing with missing
label problem.

of 12-month MR images). We further use a Gaussian similarity
kernel to emphasize such inherent resemblance knowledge
between two different time points:

wp,q = exp(
−||p − q||

2σ 2 ), (4)

where σ is empirically set as 1, and p and q donate time point
p and time point q .

The function wp,q is used to penalize the distance between
two time points so that it emphasizes the inherent resemblance,
i.e., the nearby time points induce high resemblant sparse
codes S and distant time points induce high disparities. The
final objective function of MMLC stage-I multi-resemblant
low-rank SC stage can be formalized as follows:

min
Dt∈�t ,St

T∑
t=1

(
1

2
||Xt − [D̂, D̄t ]St ||2F + λ1||St ||1,1 + λ2||St ||∗)

+ λ3

T −1∑
p=1

T∑
q=p+1

wp,q ||Sp − Sq ||22. (5)

where λ3 is a non-negative regularization parameter. We will
discuss how to optimize Eq. (5) in Sec. III.

Fig. 2 illustrates the learning process of MMLC with
subjects of ADNI from three different time points which
represents as X1, X2 and X3, respectively. Through the
multi-resemblant low-rank SC stage (Stage 1), we obtain
the dictionary and sparse codes for subjects from each time
point t : Dt and St . A dictionary Dt is composed by a
shared dictionary D̂t across all tasks and a task-specific
part D̄t only corresponding with the specific task Xt . As a
result, the sparse codes are low-rankness and have differ-
ent resemblance between each others (e.g., S1, S2 and S2,
S3 share higher resemblance, i.e., more common colors,
than S1, S3).

C. MMLC Stage-II: Multi-Target Learning With Missing
Labels

We measure the cognitive scores of patients at multiple time
points in the longitudinal AD study. We formulate the predic-
tion of clinical scores at multiple future time points simul-
taneously rather than considering the prediction of cognitive
scores as a set of single time point regression since the intrinsic
temporal smoothness information among different tasks can be
incorporated into the model as the prior knowledge. However,
there are many missing clinical scores at certain time points,
especially for later time point (36 and 48 months) ADNI data.
It will result in a huge information loss if we throw away
these data in the prediction stage. It is necessary to incorporate
the missing target values with multi-task regression to predict
clinical scores [31], [36], [37].

In this paper, we use a matrix � ∈ R
nt ×mt

to indicate
missing target values, where �i, j = 0 if the target value of
label Yt

i, j is missing and �i, j = 1 otherwise. Given the sparse
codes {S1, . . . , ST } and corresponding labels {Y1, . . . , YT }
from different times where Yt ∈ Rmt ×nt

, we formulate the
multi-target learning stage with missing target values as:

min
W1,··· ,WT

T∑
t=1

||�(Yt − Wt St )||2F + ξ

T∑
t=1

||Wt ||2F . (6)

Although Eq. (6) is associated with missing values on the
labels, we show that it has a close form and present the theo-
retical analysis of MMLC stage-II in Supplemental Material.

III. OPTIMIZATION ANALYSIS

In this section, we explain the updating procedures for
MMLC. Eq. (5) is a non-convex problem. However, it will
become a convex problem when we fix either D or S. When
the sparse codes S is fixed, solving dictionary D̂ and D̄ can
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be solved as a quadratically constrained quadratic program-
ming (QCQP) problem [35]. At the end of each update in
MMLC stage-I, we update the shared dictionary 	: 	 = D̂t

and let D̂1 = · · · = D̂t . When the dictionary D is fixed,
solving each sparse code si can be view as a sparse group
Lasso problem [38]. We alternately update Dt and St for
k = κ epoches and summarize the optimization details into
Algorithm 2.

Algorithm 2 Multi-Resemblance Multi-Target Low-Rank
Coding (MMLC)

Input : Samples Xt and corresponding labels Yt from
different time points, epoches κ , λ1, λ2, λ3, μ1,
μ2, γ , φ and D̂ = D0.

Output: The models for different time points Wt .
1 begin
2 Stage I: Multi-Resemblance Low-Rank SC Stage
3 for k = 1 → κ do
4 for t = 1 → T do
5 For each input matrix Xt ;
6 Update St,(k) via Alg. 3;
7 Update ||St,(k)||1,1 and ||St,(k)||∗ by Eq. (14)

and Eq. (15);
8 Update D̂(k): D̂(k) = D0 (D0 = D̂(k−1));
9 Update the D̂(k) and D̄t,(k) via Alg. 4;

10 Calculate wp,q function by Eq (4);
11 Update St,(k) by Eq. (20);
12 D0 = D̂(k);

13 Obtain the learnt sparse codes St , t = 1, · · · , T .
14 Stage II: Multi-Target Regression Stage
15 for t = 1 to T do
16 Given Yt

j ∈ Yt , for the j th model wt
j ∈ Wt :

wt
j = (̃St S̃tT + ξI)−1S̃t Ỹt

j

In Algorithm 2, for each image patch xt
i , we learn the

i -th sparse code st,(k+1)
i from st by several steps of cyclic

coordinate descent (CCD) [32]. We then use learnt sparse
codes st,(k+1)

i to update the dictionary D̂t,(k+1) and D̄t,(k+1)

by one step stochastic gradient descent (SGD) [33]. Since
st,(k+1)

i is very sparse, we use the index set It,(k+1)
i to record

the location of non-zero entries in st,(k+1)
i to accelerate the

update of sparse codes and dictionaries. 	 is updated by the
end of the k-th iteration to ensure D̂t,(k+1) is the same part
among all the dictionaries.

A. Updating the Low-Rankness Sparse Codes

After we pick an image patch xt
i from the sample Xt at

the time point t , we fix the dictionary D and only consider
updating the first sparse codes term S. The optimization
problem becomes the following form:

min
St

T∑
t=1

(
1

2
||Xt − [D̂, D̄t ]St ||2F + λ1||St ||1,1) (7)

Coordinate descent [32] is known as one of the state-of-
the-art methods for solving this Lasso problem [39]. In this
study, we perform the CCD to optimize Eq. (7). Empirically,
the iteration may take thousands of steps to converge, which
is time-consuming in the optimization process of dictionary
learning. However, we observe that after a few steps, the sup-
port of the coordinates, i.e., the locations of the non-zero
entries in st

i , becomes very stable, usually after less than ten
steps. In this study, we perform P steps CCD to generate
the non-zero index set I

k+1
t , recording the non-zero entry of

st,(k+1)
i . Then we perform Q steps CCD to update the sparse

codes only on the non-zero entries of st,(k+1)
i , accelerating

the learning process significantly. Stochastic coordinate coding
(SCC) [40] employs a similar strategy to update the sparse
codes in a single task. For the multi-task learning, we sum-
marize the updating rules as follows:

(a) Perform P steps CCD to update the locations of the
non-zero entries I

t,(k+1)
i and the model st,(k+1)

i .
(b) Perform Q steps CCD to update the st,(k+1)

i in the index
of I

t,(k+1)
i .

In (a), we will pick up j -th coordinate to update the model
st

i, j and non-zero entries, where j ∈ {1, . . . , pt } in every CCD
step. We perform the update from the 1st coordinate to the
pt -th coordinate. Meanwhile, we calculate the gradient g based
on Eq. (7)) and update the model st,(k+1)

i, j based on g. The

calculation of g and st,(k+1)
i, j follows the equations:

g = [D̂t,(k), D̄t,(k)]T
j

× (�([D̂t,(k), D̄t,(k)], st,(k)
i , I

t,(k)
i ) − xt

i ), (8)

st,(k+1)
i, j = λ(s

t,(k)
i, j − g), (9)

where � is a sparse matrix multiplication function that has
three input parameters. Taking �(A, b, I) as an example, A is
a matrix, b denotes a vector and I records the locations of
non-zero entries in b (an index set). The output value of �
is defined as: �(A, b, I) = Ab. We manipulate the non-zero
entries of b and the corresponding columns of A based on
the index set I when computing Ab so that we speed up
the calculation by utilizing the sparsity of b.  is the soft
thresholding shrinkage function [41] as below:

ϕ(x) = sign(x)(|x | − ϕ). (10)

In the end of (a), we count the non-zero entries in st,(k+1)
i and

store the non-zero index in I
t,(k+1)
i . In (b), we perform Q steps

CCD by only considering the non-zero entries in st,(k+1)
i . As a

result, for each index l ∈ I
t,(k+1)
i , we calculate the gradient g

and update the st,(k+1)
i,l by:

g = [D̂t,(k), D̄t,(k)]T
l

× (�([D̂t,(k), D̄t,(k)], st,(k+1)
i , I

t,(k+1)
i ) − xt

i ),

(11)

st,(k+1)
i,l = λ((s

t,(k+1)
i,l − g). (12)

Since we only focus on the non-zero entries of the model
and P is less than 10 iterations and Q is a much larger
number, we significantly accelerate the entire sparse codes
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learning process. The procedure of updating sparse codes can
be summarized into Algorithm 3.

Algorithm 3 Updating Sparse Codes st,(k+1)
i

Input : Image patch xt
i , dictionaries D̂t,(k) and D̄t,(k),

sparse codes st,(k)
i and index set I

t,(k)
i .

Output: st,(k+1)
i and I

t,(k+1)
i .

1 begin
2 for j = 1 to pt do
3 Update st,(k+1)

i, j by Eq. (8) and Eq. (9).

4 if st,(k+1)
i, j �= 0 then

5 Put j into the index set I
t,(k+1)
i .

6 for j = 1 to Q do
7 for l ∈ I

t,(k+1)
i do

8 Update l by Eq. (11) and Eq. (12).

However, in Eq. (5), there are two convex and non-smooth
regularizers for St . We propose to update the low-rankness
sparse codes by using the conventional Inexact Augmented
Lagrange Multiplier (IALM) [42]. IALM is an iterative
method that augments the Lagrangian function with quadratic
penalty terms, which allows closed-form updates for each
variable in the problem. Therefore, solving the �1 and the
nuclear norm will result in solving the following problem,
where we use two slack variables St

2 and St
3 for the two terms:

min
Dt∈�t ,St

1,S
t
2,S

t
3

T∑
t=1

(
1

2
||Xt − [D̂, D̄t ]St

1||2F + λ1||St
2||1,1

+ λ2||St
3||∗ + tr [L1(St

1 − St
2)] + tr [L2(St

1 − St
3)]

+ μ1

2
||St

1 − St
2||2F + μ2

2
||St

1 − St
3||2F ), (13)

where L1 and L2 are lagrange multipliers, and μ1 and μ2 are
two positive scalars. IALM efficiently minimize Eq. (13) and
the validity and optimality of Eq. (13) is guaranteed by the
following theorem.

Theorem 1: For Eq. (13), if {μk
r }(r = 1, 2) is

non-decreasing and
∑+∞

k=1 1/μk
r = +∞ then (S2, S3) converge

to an optimal solution (S∗
2, S∗

3).
We provide the proof of Theorem 1 in Supplemental

Material.
Theorem 1 only guarantees convergence but does not spec-

ify the rate of convergence for the IALM method and we
discuss the convergence rate at the end of this section. we use
blockwise coordinate descent to alternatively update each
variable of St

1, St
2, St

3 with all other variables fixed to their
most recent values as follows:

St∗
2 = � λ1

μ1

(St
1 + L1

μ1
), St∗

3 = � λ2
μ2

(St
1 + L2

μ2
),

St∗
1 = (DtT Dtμ1I + μ2I)−1G, (14)

where G = DtT Xt − L1 − L2 + μ1St
2 + μ2St

3, �λ(S) =
sign(S)(|S| − λ)+ is the soft-thresholding operator and
�λ(S) = U�λ(�)V T is the singular value soft-thresholding

operator with S = U�V T is the SVD of S. Then, we can
update the multipliers with φ > 1 as follows,

L1 = L1 + μ1(St
1 − St

2); L2 = L2 + μ2(St
1 − St

3);
μ1 = φμ1; μ2 = φμ2. (15)

After we obtain St∗
1 as St , we then fix St to update Dt .

B. Updating Common and Task-Specific Dictionaries

We update the dictionaries by fixing the sparse codes, thus,
and the optimization problem becomes:

min
D̂t ,D̄t

F(D̂t , D̄t ) = 1

2
||xt

i − [D̂t , D̄t ]st
i ||22 (16)

We know the non-zero entries of st,(k+1)
i after we updating

the sparse codes. The key insight of MMLC is that we just
need to update the non-zero entries of the dictionaries but not
all columns of the dictionaries, and it dramatically accelerates
the optimization. When updating the i -th column and j -th
row’s entry of the dictionary D, the gradient of D j,i is set to
be ∇D j,i = si (DT

j s − x j ). If si = 0, the gradient would be
zero. We therefore do not need to update the D j . The learning
rate is set to be an approximation of 1/Hk+1

t , which is updated
by the sparse codes st,(k+1)

i in k-th iteration. We first update
the Hessian matrix Hk+1

t by:

Hk+1
t = Hk

t + st,(k+1)
i s(t,(k+1))T

i . (17)

One step SGD is performed to update the dictionaries: D̂k+1
t

and D̄k+1
t . We use a vector R to store the information Dz − x

in order to speed up the computation.

R = �([D̂t,(k), D̄t,(k)], st,(k+1)
i , I

t,(k+1)
i ) − xt

i . (18)

Here, R = τ ([D̂(k−1), D̄t,(k−1)], St,(k))− Xt , where τ (A, B) is
a matrix multiplication function and τ (·) = AB. The procedure
of learning the l-th column and j -th row of dictionaries takes
the form of

[D̂k+1
t , D̄k+1

t ] j,l = [D̂t,(k), D̄t,(k)] j,l − 1

Hk+1
t (l, l)

st,(k+1)
i,l R j ,

(19)

where l is the non-zero entry stored in I
t,(k+1)
i . We let

the learning rate be the inverse of the diagonal element of
the Hessian matrix as 1/Hk+1

t (l, l) for the l-th column of the
dictionary.

It is important to normalize the dictionaries D̂t,(k+1) and
D̄t,(k+1) after updating them because of Dt ∈ �t in equation
(Eq. (16)). Since the dictionaries updating procedure only
occurs at non-zero entries, we perform the normalization on
the corresponding columns of st,(k+1)

i . The step of utilizing
non-zero entries from I

t,(k+1)
i accelerates the whole learning

process. We summarized the updating rules of dictionaries into
Algorithm 4.
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Algorithm 4 Updating Dictionaries D̂k+1
t and D̄k+1

t

Input : Image patch xt
i , dictionaries D̂t,(k) and D̄t,(k),

sparse codes st,(k+1)
i and index set I

t,(k+1)
i .

Output: The updated dictionaries D̂k+1
t and D̄k+1

t
1 begin
2 Update the Hessian matrix Hk+1

t by Eq. (17).
3 R = �([D̂t,(k), D̄t,(k)], st,(k+1)

i , It,(k+1)
i ) − xt

i .
4 for j = 1 to Q do
5 for l ∈ It,(k+1)

i do
6 Update every element l by Eq. (19).

C. Updating Resemblance Term

After we update Dt , we finally calculate wp,q , and update
the fourth term of Eq. (5) at the end of k-th epoch. We update
the inherent resemblant knowledge term with the iterative soft-
thresholding [43]. We first calculate the gradient g based on
Eq. (20), and then update the model St,(k) based on g. The
calculation of g and St,(k) follows the equations:

g = 1

γ
Dt Xt + [I − 1

γ
(DtT Dt + wp,qλ3I)]St,(k−1),

St,(k) = �λ3(g + wp,q
λ3

γ
Dt ), (20)

where γ is a non-negative parameter and �λ3 is the
soft-thresholding operator. Details of MMLC updating rules
can be found in Algorithm 2.

The convergence of MMLC algorithm is reached when the
error of the objective function is below a threshold � = 10−3

and the SVD of S can be computed efficiently with time
complexity O(mnl), where l < min(m, n) is its rank. It is
worth noting that the overall computational complexity of
MMLC is O(m3+�−0.5mn+m2n) when the number of IALM
iterations is O(�−0.5). This is much faster than the complexity
of conventional method O(m3 + m2n + mn2).

IV. EXPERIMENTS

A. Dataset

Data is downloaded from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database ( [44], adni.loni.usc.edu).
ADNI is the result of efforts of many co-investigators from a
broad range of academic institutions and private corporations.
Subjects have been recruited from over 50 sites across the
U.S. and Canada. The primary goal of ADNI is to test
whether biological markers, such as serial MRI and positron
emission tomography (PET), combined with clinical and neu-
ropsychological assessments, can measure the progression of
mild cognitive impairment (MCI) and early AD. Subjects
originally recruited for ADNI-1 and ADNI-GO had the option
to be followed in ADNI-2. For up-to-date information, see
www.adniinfo.org.

In this work, we study the performance of MMLC on
the entire ADNI-1 cohort. We use T1-weighted magnetic
resonance images (MRIs) coming from seven different time
points: baseline, 6-, 12-, 18-, 24-, 36- and 48-month. 837, 733,

728, 326, 641, 454 and 251 are the sample sizes corresponding
to seven time points, respectively. Thus, we learn a total
of 3970 images and the responses are the Mini Mental State
Examination (MMSE) and Alzheimer’s Disease Assessment
Scale cognitive subscale (ADAS-Cog) score. In addition,
we remove 23 subjects who do not have MMASE and
ADAS-cog information at baseline in this work.

B. Experimental Setting

1) Surface Features: We use hippocampal surface mul-
tivariate morphometry statistics (MMS) [14] (Fig. 1 (c))
as our learning features. The original input data are the
three-dimensional (3D) T1-weighted images (Fig. 1 (a))
from ADNI dataset. We first use FIRST(https://fsl.fmrib.ox.
ac.uk/fsl/fslwiki/FIRST) to segment the original data and
obtain the hippocampus substructure (Fig. 1 (b)). We then
adopt the surface fluid registration [45] to obtain surface
geometric features for automated surface registration. Fol-
lowing that, a set of vertex-wise hippocampal MMS features
are computed as [14]. They consist of surface multivariate
tensor-based morphometry (mTBM) and radial distance (RD).
mTBM describes the surface deformation along the surface
tangent plane while RD reflects surface differences along
the surface normal directions. MMS features consist 4 × 1
vectors on each vertex of 15000 vertices on every hippocampal
surface (each subject has two hippocampal surfaces). We select
1102 patches of size 10 × 10 on each hippocampal surface
mesh and each patch dimension is 400. We use the base-
line and 6-month imaging data as training data and predict
12-month to 48-month clinical scores.

2) MMLC Settings: The model is trained on an Intel(R)
Core(TM) i7-6700 K CPU with 4.0GHz processors, 64 GB
of globally addressable memory and a single Nvidia TITAN
X GPU. The source code of MMLC are available at
http://gsl.lab.asu.edu/software/mmlc. In stage one, λ1 = 0.1,
λ2 = 10−2, λ3 = 10−3, μ1 = 10, μ2 = 1 and γ = 1, φ = 10.
The SCC sparsity parameter (λ1) is the best parameter setting
as [40]. The rest parameters are selected by cross-validation
results on the training data. For example, we use 5-fold
cross-validation with a grid search to pick the best parameters
for λ2 and λ3 from {1000, 100, 10, 1, 0.1, 10−2, 10−3, 10−4,
10−5}. In stage two, cross-validation is used to select model
parameters ξ (between 10−3 and 103). For common and indi-
vidual dictionary split, we compare the performance by vary-
ing the dictionary size as 125:875, 250:750, 500:500, 750:250,
875:125. We observe that the algorithm has the best perfor-
mance while the ratio between the common dictionary and the
individual parts is 1:1. Therefore, in all experiments, we use
1000 atoms for the dictionary and 500:500 split atoms as the
size of common and task-specific dictionaries (Sec. IV-C.1).
When the sparse features are learned, Max-Pooling is used
to generate features for annotation and finally we got a
1000-dimensional feature vector for each subject.

3) Evaluation Method: In order to evaluate the model,
we randomly split the data into training and testing
sets using a 9:1 ratio to avoid data bias and report
the mean and standard deviation based on 50 differ-
ent splits of data. We evaluate the overall regression
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Fig. 3. Comparison of rMSE performance by varying the size of common
dictionary.

performance using weighted correlation coefficient (wR)
and root mean square error (rMSE) for task-specific
regression performance measures. The two measures are
defined as wR(Y, Ŷ) = ∑T

t=1 Corr(Yt , Ŷt )nt/
∑T

t=1 nt ,

r M SE(Yt , Ŷt ) =
√

||Yt − Ŷt ||22/nt . For wR, Yt is the ground

truth of target of task t and Ŷt is the corresponding predicted
value, Corr is the correlation coefficient between two vectors
and nt is the number of subjects of task t . rMSE is computed
for each task t , Yt is the ground truth of the target responses
and Ŷt is the corresponding prediction. The smaller rMSE,
the bigger wR mean the better results.

4) Comparison Methods: We compare the proposed algo-
rithm MMLC with six other methods: 1) single-task regression
methods: LASSO [39] and Ridge [46]; 2) multi-task regression
methods: multi-task regression with �2,1 norm regulariza-
tion [47] (L21) and temporal group Lasso based multi-task
progression model [31] (TGL); 3) sparse coding-based meth-
ods: single-task sparse coding followed by Lasso [21] (STSC),
Muilti-source Multi-target dictionary learning followed by
Lasso regression [20] (MSMT) (λ2 = 0 and λ3 = 0 in Eq. (5)).

C. Experimental Results

1) The Atoms of Common and Task-Specific Dictionaries: In
stage one of MMLC, the common dictionary is assumed to
be shared by different tasks. It is necessary to evaluate what
is an appropriate size of such common dictionary. Therefore,
we set the dictionary size to be 1000 and partition the
dictionary by different proportions: 125:875, 250:750,500:500,
750:250 and 875:125, where the left number is the size of
common dictionary while the right one is the size of individual
dictionary for each task. Fig. 3 shows the results of rMSE
of MMSE and ADAS-cog prediction. As it shows in Fig. 3,
the rMSE of MMSE and ADAS-Cog are lowest when we split
the dictionary by half and a half. It means the both of common
and individual dictionaries are of equal importance during the
multi-task learning.

2) Comparison With Two Other Sparse Coding Methods:
There are quite a variety of sparse coding approaches in
the literature. We compare our work with two other sparse
coding methods. We use the online dictionary learning code
package for (ODL) [18] method. We also implement the
low-rank shared dictionary learning (LRSDL) method, based
on the paper [48] and the github source code.1 To simplify the
comparison experiments, we adopt the classification problem
in our prior work [49] where we apply Stochastic Coordinate

1https://github.com/tiepvupsu/DICTOL_python

TABLE I
TIME COMPARISONS OF MMLC AND STSC BY VARYING

DICTIONARY SIZE ON ADNI-I DATASET

Coding (SCC) to generate sparse hippocampal surface features
for classification studies. In this problem, its objective function
is the same as Eq. (1) for ODL and SCC (we provide the
objective function for LRSDL in Supplemental Material).
We conduct 6 different classification experiments and test
ODL, SCC and LRSDL measures in terms of running time,
and objective function value, respectively. For the comparison
methods, we select the hyper-parameter for LRSDL by using
the same strategy as SCC on the training set. We report
the detailed experimental results in Supplemental Material.
In summary, among these three methods, SCC achieves the
best balance between performance and the running time. The
experimental results may justify our selection of SCC method
for the studied problem.

3) The Comparisons of Time Efficiency: We compare the
efficiency of our proposed MMLC with STSC (Algorithm 1).
In this experiment, we focus on the single batch size setting,
that is, we process one image patch in each iteration. We vary
the dictionary size as: 500, 1000 and 2000. For MMLC,
the ratio between the common dictionary and the individual
parts is 1:1. We report the results on ADNI-I cohort in
Table IV-C.2. We observe that the proposed MMLC uses
less time than STSC. When the size of dictionary increases,
MMLC is more efficient and has a higher speedup compared
to STSC.

4) Comparison Results on MMSE and ADAS-Cog: We report
the comparison results of MMLC and other methods of
MMSE and ADAS-cog with ADNI-1 cohort in Table II and
Table III, respectively. In both tables, we can find that the
cognition predictions produced by MMLC achieves the highest
correlation with the ground truth data. In Fig. 4, we can
find that MMLC achieves relatively high correlation on both
12-month and 48-month prediction results. It shows that the
prediction results of MMLC do not decrease quickly for
the long term prediction. After MMLC formulates temporary
sequence information, the results are more linear, reasonable
and accurate on all time points. Moreover, MMLC and MSMT
methods can handle missing data on both source and target
sides. L21 and TGL can deal with missing target data while
neither Lasso nor Ridge can deal with missing data.

In Table II, the proposed MMLC outperforms linear regres-
sion methods in terms of both rMSE and correlation coefficient
wR on four different time points. The results of Lasso and
Ridge are very close while sparse coding methods are superior
to them. For sparse coding methods, we observe that MTSC
obtains lower rMSE and higher correlation results than STSC
since MTSC considers the correlation between different time
slots and the task-specific relationship. STSC has lower rMSE
than MMLC on M18 because 18-month data is significantly
less than other time points and SC has its bias on that point.
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TABLE II
PERFORMANCE COMPARISON BETWEEN THE PROPOSED ALGORITHM (MMLC) AND SIX OTHER METHODS (SEC. IV. B. (4)) ON

PREDICTING FUTURE MMSE SCORES OF 12-, 18-, 24-, 36-, 48-MONTH BASED ON BASELINE AND 6-MONTH

HIPPOCAMPAL MORPHOMETRY DATA ON THE WHOLE ADNI-I DATASET

TABLE III
PERFORMANCE COMPARISON BETWEEN THE PROPOSED ALGORITHM (MMLC) AND SIX OTHER METHODS (SEC. IV. B. (4)) ON

PREDICTING FUTURE ADAS-COG SCORES OF 12-, 18-, 24-, 36-, 48-MONTH BASED ON BASELINE AND

6-MONTH HIPPOCAMPAL MORPHOMETRY DATA ON THE WHOLE ADNI-I DATASET

Fig. 4. Scatter plots of actual MMSE and ADAS-Cog versus predicted values on M12 and M48 by using MMLC.

We also notice that the proposed MMLC further improves the
result of MTSC since we consider the low-rankness of the
sparse codes and the resemblant knowledge in longitudinal
dataset. Note that we significantly improve the rMSE results
for later time points. A possible reason is that the baseline
images have less correlation with later time points images and
MTSC treats each time point equally.

In Table. III, we can observe that the best performance of
predicting scores of ADAS-Cog is achieved by MMLC in
four-time points. Comparing with L21, after MMLC dealing
with missing labels, the results are more linear, reasonable
and accurate. Due to the dimension of M36 and M48 is too

small, it is hard to learn a complete model. TGL also considers
the issue of missing labels, however, MMLC achieves better
results because MMLC incorporates multiple-source data and
uses common and individual dictionaries. This shows our
method is more efficient in dealing with incomplete data.

We also notice that the proposed MMLC further improved
the results of MSMT since we consider the low-rankness of
the sparse codes and the resemblant knowledge in longitudinal
dataset. Note that we significantly improve the rMSE results
for later time points. A possible reason is that the baseline
images have less correlation with later time points images and
MSMT treats each time point equally.
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Fig. 5. The rMSE results of MMSE with different amount missing data
by MMLC-Lasso and Imputation-Lasso, respectively.

We show the scatter plots for the predicted values versus
the actual values for MMSE and ADAS-Cog on the M12 and
M48 in Fig. 4. In the scatter plots, we see the predicted values
and actual clinical scores have a high correlation. The scatter
plots show that the prediction performance for ADAS-Cog is
better than that of MMSE.

5) Ablation Study on Different Amount of Missing Data: Fur-
thermore, we study whether MMLC helps improve incomplete
data results by varying different amounts of missing data.
We start with a total of 122 subjects, which have complete
MMSE value at all seven time points. We then randomly
removed 20%, 30%, 40% and 50% target values during
training. We perform our algorithm MMLC to the complete
data and different amounts of incomplete data. For comparison
purposes, we apply the imputation approach [50] to complete
the missing data which uses neighboring time point data to
approximate the missing value. For the experimental settings,
we follow those of Sec. IV-B.2. Fig. 5 shows the rMSE results
with different amounts of missing data. The results show
that compared with the imputation method [50], our approach
has better results that are close to the performance with the
complete data.

V. DISCUSSION

In AD research, structural MRI-based hippocampal mor-
phometry measures correlate closely with differences and
changes in cognitive performance [51], [52], supporting their
validity as markers of AD progression. Recent research further
demonstrated that hippocampal morphometry may be used to
predict amyloid burden [53], [54] and identify AD related
changes in the preclinical stage [15], [55]. In this work,
we found that one may predict future cognitive decline by
analyzing longitudinal hippocampal morphometry changes.
Therefore, our work supports the potential to use sMRI
biomarkers as predictors of disease progression.

In this work, we adopted FIRST for hippocampus segmen-
tation. However, our hippocampal morphometry system has
utilized different segmented hippocampal data as input. For
example, our earlier work (e.g., [56]–[58]) used manually
segmented hippocampi to build surface meshes. Later we
adopted FIRST for automatic hippocampus segmentation [45]
and used it in almost all our hippocampal morphometry
research. Meanwhile, we also used FreeSurfer segmented
hippocampi to build hippocampal surface meshes [59]. All of
them achieved reasonable results in group difference studies
and thus the results demonstrated that our pipeline is robust
to segmentation methods. The reason for us to choose FIRST
for most of work is that FIRST can always generate topo-
logically sound segmentation results while FreeSurfer does
not guarantee topologically correct results. Therefore, manual
quality control is necessary to incorporate FreeSurfer in our
pipeline. Thus far, our related prediction/classification work
(e.g., [16], [60]) all adopted FIRST segmented hippocampal
surfaces to work with relatively large scaled datasets. Since
the input of our MMLC is the surface features rather than
the output from segmentation tools, it is reasonable for us to
expect that our method is not sensitive to the hippocampus
segmentation tools used.

In ADNI, the scan times “12-month”, “24-month” etc. are
nominal times. With the baseline data, we computed the
exact interval months for all longitudinal data used in our
research. The average months and their standard deviations on
each time point are 6.94 ± 0.96, 12.98 ± 1.01, 19.10 ± 1.06,
25.18 ± 1.41, 37.15 ± 1.37 and 49.43 ± 1.42 for 6-, 12-,
18-, 24-, 36- and 48-month data, respectively. It shows
that 6-month data are not exactly scanned in the following
6-month. One way to make them perfectly aligned to a specific
month may be a linear interpolation. However, it would assume
all features change linearly with time, a strong assumption
which we try to avoid in our formulation. On the other hand,
our multi-task model does not make any specific assumption
on the relationship between features on a specific time point.
Our model simply assumes that the time points are similar to
each other so that they can be clustered together (i.e., with the
same time label in the same matrix Xt ). It can be uniquely
applied to analyze longitudinal data which are not collected
in the exact time points (such as ADNI, Australian Imaging
Biomarkers and Lifestyle Study of Aging (AIBL) [61] and
Arizona APOE cohorts [62]). Although we believe that the
development of more refined analysis models is necessary,
our current experimental results show that our models may
be effectively applied to analyze such longitudinal data.

In Supplementary Material, we show that the final objec-
tive function is non-decreasing and converges to an optimal
solution. However, as the objective function is not convex,
the problem may have multiple solutions. For general cases,
existing works show for such problems, the objective function
values increasingly convert to some value in each iteration
but whether it converges to the global optimum is still an
open problem [63]–[65]. With the current “greedy” strategy in
each optimization iteration, we can guarantee that the solution
converges to a local optimum. To show the local optimal solu-
tion is also the global optimum, we empirically repeated our
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experiments several times with different random initializations
and the solutions of our proposed method converged to the
minimum values which are very close to each other. Besides,
in Supplementary Material, we also compare the objective
function values of our MMLC methods with two state-of-
the-art methods, online dictionary learning (ODL) [18] and
low-rank shared dictionary learning (LRSDL) [48] methods.
With a similar experimental setup, the three minimal objective
function values are quite close. These results empirically
support that our work may converge to the global optimum
in the current study.

This work represents our initial efforts to develop robust
machine learning algorithms to study the prediction of cog-
nitive decline with both incomplete longitudinal brain images
and incomplete clinical labels. Nonetheless, there is still much
to be desired in our current experimental results on ADNI
cohort. For example, in both Table II and Table III, although
we generally achieved smaller rMSE results compared to other
methods, on some time points, our work only achieved slightly
improved results and our work sometimes had larger standard
deviation. In the future, we will further evaluate our work
in larger brain imaging cohorts (e.g., UKBiobank imaging
study [66]). Meanwhile, we will continue refining our methods
by exploring the underlying feature-feature relationship and it
may further improve our results.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel multi-task sparse cod-
ing framework together with an efficient numerical scheme
(MMLC). Our experimental results clearly show MMLC offers
a unique perspective on prognosis with longitudinal data.
In the future, we will incorporate our recent feature selection
model [67] to visualize the identified imaging biomarkers.
We will also refine our system by considering the design of a
hierarchical model to further improve its statistical power.
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